**Problem 4.28** If the charge density increases linearly with distance from the origin such that $\rho_v = 0$ at the origin and $\rho_v = 4 \text{ C/m}^3$ at $R = 2 \text{ m}$, find the corresponding variation of $\mathbf{D}$.

**Solution:**

$$\rho_v(R) = a + bR,$$

$$\rho_v(0) = a = 0,$$

$$\rho_v(2) = 2b = 40.$$  

Hence, $b = 20$.

$$\rho_v(R) = 20R \quad (\text{C/m}^3).$$

Applying Gauss’s law to a spherical surface of radius $R$,

$$\oint_S \mathbf{D} \cdot d\mathbf{s} = \int_V \rho_v \, d\mathbf{v},$$

$$D_R \cdot 4\pi R^2 = \int_0^R 20R \cdot 4\pi R^2 \, dR = 80\pi \frac{R^4}{4},$$

$$D_R = 5R^2 \quad (\text{C/m}^2),$$

$$\mathbf{D} = \hat{\mathbf{R}} D_R = \hat{\mathbf{R}} 5R^2 \quad (\text{C/m}^2).$$