Problem 4.56 Figure P4.56(a) depicts a capacitor consisting of two parallel, conducting plates separated by a distance d. The space between the plates contains two adjacent dielectrics, one with permittivity ε_1 and surface area A_1 and another with ε_2 and A_2. The objective of this problem is to show that the capacitance C of the configuration shown in Fig. P4.56(a) is equivalent to two capacitances in parallel, as illustrated in Fig. P4.56(b), with

$$C = C_1 + C_2 \quad (19)$$

where

$$C_1 = \frac{\varepsilon_1 A_1}{d} \quad (20)$$

$$C_2 = \frac{\varepsilon_2 A_2}{d} \quad (21)$$

To this end, proceed as follows:

(a) Find the electric fields E_1 and E_2 in the two dielectric layers.

(b) Calculate the energy stored in each section and use the result to calculate C_1 and C_2.

(c) Use the total energy stored in the capacitor to obtain an expression for C. Show that (19) is indeed a valid result.

[Diagram of capacitor with parallel dielectric section and equivalent circuit]
Solution:

\[E_1 = E_2 = \frac{V}{d}. \]

\[W_{e1} = \frac{1}{2} \varepsilon_1 E_1^2 \cdot V = \frac{1}{2} \varepsilon_1 \frac{V^2}{d^2} \cdot A_1 d = \frac{1}{2} \varepsilon_1 V^2 \frac{A_1}{d}. \]

But, from Eq. (4.121),

\[W_{e1} = \frac{1}{2} C_1 V^2. \]

Hence \(C_1 = \varepsilon_1 \frac{A_1}{d} \). Similarly, \(C_2 = \varepsilon_2 \frac{A_2}{d} \).

(c) Total energy is

\[W_e = W_{e1} + W_{e2} = \frac{1}{2} \frac{V^2}{d} \left(\varepsilon_1 A_1 + \varepsilon_2 A_2 \right) = \frac{1}{2} CV^2. \]

Hence,

\[C = \frac{\varepsilon_1 A_1}{d} + \frac{\varepsilon_2 A_2}{d} = C_1 + C_2. \]